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Abstract

This article proposes a fundamental methodological shift in the modelling of policy
interventions  for  sustainability  transitions  in  order  to  account  for  complexity  (e.g.  self-
reinforcing mechanisms, such as technology lock-ins, arising from multi-agent interactions)
and agent heterogeneity (e.g. differences in consumer and investment behaviour arising from
income stratification). We first characterise the uncertainty faced by climate policy-makers
and its implications for investment decision-makers. We then identify five shortcomings in
the  equilibrium  and  optimisation-based  approaches  most  frequently  used  to  inform
sustainability  policy:  (i)  their  normative,  optimisation-based  nature,  (ii)  their  unrealistic
reliance on the full-rationality of agents, (iii) their inability to account for mutual influences
among  agents  (multi-agent  interactions)  and  capture  related  self-reinforcing  (positive
feedback) processes, (iv) their inability to represent multiple solutions and path-dependency,
and (v) their inability to properly account for agent heterogeneity. The aim of this article is
to introduce an alternative modelling approach based on complexity dynamics and agent
heterogeneity,  and explore  its  use  in  four  key areas  of  sustainability  policy,  namely  (1)
technology adoption and diffusion, (2) macroeconomic impacts of low-carbon policies,  (3)
interactions between the socio-economic system and the natural environment, and (4) the
anticipation of  policy outcomes.  The practical  relevance of  the proposed methodology is
subsequently discussed by reference to four specific applications relating to each of the above
areas: the diffusion of transport technology, the impact of low-carbon investment on income
and employment, the management of cascading uncertainties, and the cross-sectoral impact
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of biofuels policies. In conclusion, the article calls for a fundamental methodological shift
aligning the modelling of the socio-economic system with that of the climatic system, for a
combined and realistic understanding of the impact of sustainability policies.

Keywords:  environmental policy assessment; climate change mitigation; complexity
sciences; behavioural sciences
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1.  INTRODUCTION

1.1.  The chilling effect of uncertainty

The starting-point of this article is the need to tackle the uncertainty facing climate policy-
making  and  the  related  investment  decision-making  through  a  more  realistic  modelling
approach. 

National  and  international  public  policy-making  must  confront  the  unprecedented
challenge of effectively managing the complex interaction of economic development, energy
systems and environmental change (IPCC, 2014). The effects of stringent climate policies are
subject to uncertainty and disagreement, which hinders policy action, and the lack of policy
clarity has, in turn, a chilling effect on the private sector’s incentives to shift investment
towards sustainable options and opportunities.  In contexts of damaging policy indecision,
investors are often inclined to wait before committing to new long-lived capital investment
decisions (IEA, 2007). Meanwhile, carbon budgets are increasingly consumed (IPCC, 2013),
and the likelihood of avoiding dangerous climate change is rapidly decreasing. Consensus on
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desired outcomes achieved through international agreements (COP15 and COP21) urgently
needs to be translated into consensus on actions, to identify effective climate policy, and
facilitate its rapid global adoption.

At the roots of policy indecisiveness lie conflicts in our understanding of the complex
interactions between technology, society, the macroeconomy, and the environment. Policy-
makers often consider that important trade-offs exist between, on the one hand, improving
the sustainability of the economy and, on the other hand, adequately supporting economic
growth. The ensuing reluctance to act contrasts with the signals from an increasing body of
reports produced by think-tanks and international organisations arguing that wealth could
be generated by new green technology. Decision-makers thus face dissonant signals, causing
them to hold back their action. Indeed, successful public (and related private) initiatives of
the scale required to stabilise emissions and adapt to climate change have no precedent, and
they are unlikely to develop unless the important uncertainty as to their full implications is
properly tackled. To make the analysis more intelligible, we identify four major areas where
uncertainty  contributes  to  climate  policy  indecisiveness:  (1)  the  dynamics  of  technology
adoption and diffusion; (2) macroeconomic impacts of low-carbon policies;  (3) interaction
between human and environmental systems; and (4) policy implementation and effectiveness.

Solutions to environmental degradation rest on the diffusion of mostly energy-related
innovations,  technologies and practices throughout industries and between households. In
many cases, low-carbon alternatives already exist. However, whether their adoption can be
incentivised  in  time  to  avoid  dangerous  environmental  change,  and  whether  this  is
economically or technically possible, are open questions. Similarly, the extent to which such
diffusion could support economic development is not well understood. Moreover, it is also
unclear whether climate policies may influence access to food, water and energy, and – if so –
how. Hence, guidance on how to understand the complex interactions between technology,
the macroeconomy, and the environment is much needed. 

This article introduces a methodological approach that could significantly improve our
ability  to  anticipate  the  effects  of  climate  policies,  by  integrating  behavioural  and  non-
equilibrium complexity  science and environmental  feedbacks into  climate policy  analysis,
with a framework consistent across relevant disciplines. 
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1.2.  Shortcomings of equilibrium and optimisation-based 

analysis

Equilibrium and optimisation-based approaches (e.g. Cost-Benefit Analysis or CBA, general
equilibrium, cost-optimisation), despite their contribution to date (e.g. GEA, 2012; Stern,
2007),  have  five  main  shortcomings  for  the  analysis  of  the  uncertainty  identified  in  the
preceding section. 

The first shortcoming concerns the concept underpinning these approaches, namely
that of an effective social planner coordinating society to minimise total cost or maximise
aggregate  utility,  and  the  implicit  corollary  that  there  exists  a  unique  stable  economic
equilibrium to which the economy tends to return after exogenous disturbances (e.g. see Mas-
Colell et al. 1995). This method leads to approaches that are generally normative (i.e. they
seek to identify optimal strategies) rather than positive/descriptive (i.e. they do not always
seek to describe actual system behaviour with a high degree of realism). While a normative
approach may appear attractive for policy purposes, it is fundamentally undermined by the
fact that no such central coordination exists, while the assumption of optimality neglects
critical aspects of economic reality such as unemployment and market disequilbria that act
both as drivers of change and opportunities for economic growth. If the economy is assumed
to be permanently in an optimal state, then planning for and incentivising change makes
little sense. 

A second, closely related shortcoming is that equilibrium theories do not sufficiently
allow for the possibility that agents may not be fully rational. Indeed, equilibrium theories
typically involve finding the (inter-temporal) maximum of the aggregate utility function (or,
in cost-optimisation models, the minima of total system costs). Such a maximum (minimum)
results from the sum of the utility (cost) functions of the underlying agents, who are assumed
to carry  out  an exhaustive ranking of  their  preferences  over  all  possible  products  in all
existing markets, and to optimise their goods basket choices given an economic context (see
Mas-Colell,  et  al.  1995).  Underpinning  this  understanding  is  the  assumption  that  the
aggregate behaviour of a system of utility-maximisers can always be expressed as that of a
single  average utility-maximising representative agent  (see  Kirman, 1992,  for a critique).
However, if one admits that agents do not carry out an exhaustive ranking of preferences
(bounded  rationality)  or  that  agents  may  influence  one  another,  the  utility  of  the
representative  agent  becomes  too  complex  or  impossible  to  optimise  due  to  increasing
feedbacks and emerging complex dynamics. It then becomes unclear whether optimisation
methods can be used at all, and whether imposing strictly constant or decreasing returns, in
order for models to converge, does not come at the price of losing touch with reality. In other
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words, humans are not supercomputers optimising their choices over all goods offered in all
markets of the planet (Kirman, 1992). Agents usually know a small subset of information on
goods they desire, and do not desire goods they know nothing of. 

Thirdly, equilibrium theories do not capture the possibility that agents may influence
one  another,  leading  to  positive  feedbacks  and  increasing  returns.  In  this  regard,  the
conventional equilibrium perspective may be termed reductionist, in the meaning ascribed to
this  term  in  complexity  theory  (Anderson,  1972),  i.e.  the  macro  system  behaviour  is
aggregated from micro properties, but without considering to a full extent the interactions
(including mutual influence) between agents. Following complexity theory, one may consider
interactions  as  additional  elements  that  lead  to  the  emergence  of  additional  collective
phenomena.  In  economics,  the  inclusion  of  multi-agent  interactions  (specifically,  the
possibility  that  agents  influence  the  behaviour  of  other  agents)  actually  determines  the
difference between, on the one hand, models of an economy effectively formed of a single
agent  (or N isolated individuals)  and,  on the other  hand,  models  of  an economy where
additional  processes  due  to  crowd  effects  are  allowed  to  emerge,  including  technology
transitions and economic cycles. Allowing for multi-agent interactions is very important in
practice because such interactions are at the roots of all self-reinforcing economic processes
(crowd effects), and these are neglected in equilibrium economics. In the theory of complex
systems, many properties emerge solely from the interactions between agents, not from the
behaviour  of  the  agents  themselves  (regardless  of  whether  these  are  in  homogeneous  or
heterogeneous contexts). This includes important economic phenomena such as the profile of
diffusion of innovations, learning-by-doing, expectations in finance and economic fluctuations,
trends and fashions, technology lock-ins, and many more. These phenomena exist, but do not
stem from microeconomic behaviour of isolated individual agents. Therefore they cannot be
studied with a methodological understanding that ignores interactions between agents. With
multi-agent  interactions,  the  representative  agent  may be  understood  to  gain  additional
emergent  collective  behavioural  traits  that  the  underlying  agents  do  not  possess  when
isolated. Thus while there is a good rationale for desiring a macro theory built on micro-
foundations, the latter must include not just agent properties (e.g. preferences and income)
but also inter-agent interactions, and this is a great – yet unavoidable – challenge. 

Because  optimisation  approaches  (optimal  growth,  computable  general  equilibrium
(CGE), partial equilibrium cost-optimisation) are sensitive to the curvature of their demand
and supply or cost functions, as such, they are unfit to fully account for increasing returns,
understood  as  self-reinforcing  phenomena.  This  includes  for  example  a  decline  in  prices
resulting from cumulative investment (learning),  leading to investments that increase the
likelihood of more similar investments. In an optimisation context, such positive feedbacks
lead to numerical instability of the model solver (due to multiple solutions). Yet, processes
with increasing returns are a very important feature of the real world, particularly as regards
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climate  policy.  For  example,  early  investments  in  solar  energy  may  ultimately  lead  the
technology, through learning, to competitiveness and possible market dominance, while a lack
of early investments would have confined the technology to niche applications. 

A fourth, related shortcoming is the inability of conventional models to account for
multiple  solutions  and path-dependence.  Indeed,  when increasing returns  are  introduced,
several solutions to the optimisation problem emerge, and it becomes unclear which optimum
is the correct one. In the investment example above, two different possible future solutions
evolve  from  different  early  investment  decisions.  Real-world  technological  and  economic
change is  thus  path-dependent.  Technology adoption typically  follows S-shaped patterns,
which  stem partly  from social  influence  and interactions,  where  adoption  of  innovations
increases the likelihood of further adoption of the same innovations (Rogers, 2010). Full path-
dependency is  a key property  missing in many current economic models  and Integrated
Assessment  Models  (IAMs),  the  latter  combining  global  energy-economy-climate  change
phenomena used to assess environmental policy, whether they are based on small (e.g. DICE
model, Nordhaus, 2013; FUND model, Anthoff & Tol, 2014; PAGE model, Hope, 2011) or
large  datasets  (e.g.  PRIMES and  GEM-E3 models,  E3MLab,  2013,  2015;  TIAM model,
IEA/ETSAP, 2012;  MESSAGE model,  IIASA,  2013;  AIM model,  NIES, 2012;  REMIND
model, PIK, 2011). 

Finally, equilibrium theories do not sufficiently account for agent heterogeneity. People
and firms are represented by the behaviour of a single representative agent with rational
expectations. This agent is understood as the aggregate collective behaviour emerging from
the actions of the underlying agents, which can have distributed preferences (Mas-Colell et
al., 1995). But no clear role is ascribed to differences in the distribution of income or other
socio-economic and industry parameters, and, following expected utility theory (EUT), only
one type of behavioural response exists,  namely a decision based on the expected utility
associated with different choices times their respective probabilities (assumed to be known).
In the real world, at least two types of deviations from EUT typically arise: behavioural
diversity  (variations  around  a  central  value,  e.g.  discrete  choice  theory,  Domencich  &
McFadden,  1975)  and  behavioural  biases  (systematic  deviation  from EUT,  e.g.  prospect
theory, Kahneman & Tverski, 1979; see also Sorrell, et al., 2011 for a review and taxonomy).
Agent heterogeneity can also be interpreted, in a utility maximisation perspective, as some
degree  of  ambiguity  in  terms of  agent  perceptions  of  optimality.  Agent  heterogeneity  is
important in the representation of  consumer or  investor  choices,  which is  critical  in the
process  of  the diffusion of  innovations,  technologies  and practices  (Knobloch & Mercure,
2016).  As  can  be  inferred  from  standard  innovation  diffusion  theory  (Rogers,  2010),
behavioural response, its diversity, the diversity of social groups, and unequal distribution of
information, are precisely what determines actual rates of adoption of innovations. This is
standard  knowledge  in  the  field  of  marketing  research  (e.g.  Smith,  1956  on  product
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differentiation),  where  firms  seek  profits  out  of  matching  products  to  diverse  consumer
profiles.  In  addition,  utility  maximisation  under  budget  constraint  is  known  to  be  an
incorrect representation of attitudes towards risk, gains, losses and uncertainty (as shown in
prospect theory, Kahneman & Tverski, 1979; Tversky & Kahneman, 1974). 

The shortcomings of equilibrium models in accounting for multi-agent interactions and
their self-reinforcing processes (complexity) or for diversity (agent heterogeneity) leads to the
exclusion of very important features of reality from the analysis. Indeed, assuming that a
simple unique equilibrium solution exists to the CBA of climate change mitigation comes at
a price. It neglects both the path-dependency produced by self-reinforcing phenomena (which
are at the roots of technology lock-ins, financial bubbles and crises, technology transitions,
etc.) and the diversity of agents (which determines the rates of adoption of innovations).
Such analytical omissions are reflected in the types of policies that are advocated on that
basis. Specifically, they lead to the expectation that a simple internalisation of environmental
costs, in the form of a pricing instrument (e.g. a carbon price or tax) will optimally and
effectively incentivise technology adoption and diffusion. And, standard CBA fails to explain
why, in the real world, such instruments do not play out and deliver as expected (Grubb,
2014). In point of fact, the expected optimal success of such mechanisms is but a reiteration
of the initial assumptions of the model, rather than a result of the actual analysis: efficient
markets, rationality, etc. 

Compared to equilibrium models of the economy, complex, path-dependent models
may appear to be less straightforward to interpret, but should ultimately be easier to relate
to  reality.  Complexity  is  routinely  handled  in  climatology  simulations,  where  it  is  well
understood that small variations between model runs in their starting values (e.g. pressure,
temperature, wind velocity) lead to large differences in model outcomes (rainfall, cloud cover,
etc) that increase exponentially with simulated time span. This is due to a high degree of
non-linear interaction between variables. This aspect is very well characterised and expressed
as probability distributions for climate impacts (e.g. in the IPCC, 2013 summary for policy-
makers).  Uncertainty increasing with time of  projection will  arise  in almost any domain
where complex interactions between system components exist, not least in economics. A key
purpose of this article is to argue that economic analysis could benefit from harmonising its
methodology with that of the climate sciences. 

1.3.  A paradigm shift

Integrating both complexity and behavioural sciences as applied to economics would bring
path-dependency and agent heterogeneity to the core of the analysis. Complexity science is
the cross-disciplinary field that specifically studies properties that emerge from interactions
between system components, initially studied in physical, biological and computer sciences
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(e.g. Anderson, 1972; Sigmund, 1993). By introducing descriptions of how agents behave and
interact,  theories  and  models  turn  from  normative  to  positive/descriptive  and  their
methodology evolves from optimisation to simulation, where the analyst relies on ‘what if’
approaches. 

It  is  understood  that  in  simulations  of  complex  systems,  uncertainty  plays  an
important role partly because the theories do not necessarily predict a propensity to return
to equilibrium. This is an aspect well understood and managed in the climate sciences, and
no inherent reason prevents us from using the same concepts in economics. Indeed, humans
behave in unpredictable ways, partly dictated by diverse contexts. The fact that humans
have agency or ‘free will’, is a frequent objection raised by social scientists, to the modelling
of behaviour. This argument does not contradict our approach, however, for the following
reason.  Humans do  not  behave  randomly (unlike  physical  particles);  however,  while  the
actions of individuals cannot be predicted, they almost always lie within known bounds, over
which statistics can be developed when considering large groups of people (as for physical
particles  –  e.g.  the  multinomial  logit  in  social  sciences  is  conceptually  identical  to  the
Boltzmann factor in statistical physics). The result is a theory of collective behaviour. In
complex systems (e.g. the climate, the economy), both natural and social systems face the
same complexity challenges, and their description can be modelled in the same way. 

In practical terms, the complexity-based methodological approach proposed in this
article follows an analytical structure where many scenarios are simulated based on possible
policy choices, and acceptable results are retained based on a multidimensional  range of
outcomes that reach given objectives. For example, such an approach can involve filtering
scenarios, in multidimensional human and biogeochemical space (e.g. multiple indicators such
as those likely to be selected for the recently adopted Sustainable Development Goals), to
determine  ranges  of  policy  options  that  enable  society  to  avoid  exceeding  planetary
boundaries (Rockström et al., 2009; Steffen et al., 2015) while ensuring continued human
development  globally  (OXFAM,  2012).  Ambiguity  or  conflicting  perceptions  of  optimal
policy-making between diverse policy-makers or model users is avoided by leaving subjective
outcome value judgments outside of the scientific framework.  Indeed, unlike conventional
multi-criteria analysis,  where optimisation is carried out using subjective weighting of all
factors considered given by the modeller,  in the context we propose one obtains feasible
points in a multidimensional  outcome space,  and the policy-maker can target a possible
subspace in accordance with her/his political platform. 
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1.4.  Why complexity and heterogeneity are so important for 

sustainability transitions

A sustainability transition inherently involves socio-technical change, which is a highly non-
linear, self-reinforcing process with lock-ins that drive expectations, propelled by choices of
and adoption by diverse agents with different perspectives and incomes (e.g. Geels, 2002;
Rogers, 2010). For such a system, complexity and behavioural sciences provide a suitable
analytical framework. Indeed, technology transitions have an inevitably significant influence
on the evolution of the economy through productivity and structural change, which occurs
with the development of new firms and industries, and the destruction of others (e.g. Arthur,
1989; Freeman & Louça, 2001; Perez, 2001; Schumpeter, 1934, 1939). At the same time, an
economic  transformation  towards  higher  or  lower  sustainability  takes  place  in  direct
interaction with the environment and its biogeochemical cycles. Simultaneous representations
of these four domains (technology, society, the macroeconomy and the environment) cannot
reliably be optimised even on the largest super-computers. This is so partly because diverse
agents will have conflicting definitions of optimality. 

By  contrast,  in  models  capable  of  accounting for  agent  diversity  and  multi-agent
interactions, interactions among technology, society, the macroeconomy and the environment
can indeed be simulated, much like in models used to simulate the climate. Such models
would need to be applied within a framework of uncertainty analysis, in that they would
determine the likely  outcomes (within uncertainty bounds)  of  different  policies  or  policy
packages  as  applied  to  interacting  heterogeneous  agents.  Such  knowledge  would  provide
policy-makers with a much more realistic platform to make decisions, and a platform that
could be more easily tailored to the specific features of a given policy context (e.g. a region, a
country, a sector, etc.). 

A complexity paradigm has been suggested as a practical approach to policy problems
(Probst & Bassi,  2014). A field of research is also emerging for modelling socio-technical
regime transitions (e.g. Köhler et al., 2009; Holtz, 2011; Holtz et al., 2015; Mercure, 2015;
Safarzynska & van den Bergh, 2010, 2012, see also Turnheim et al., 2015), in which ‘core
characteristics  of  transitions’  are  itemised  as  (i)  ‘multi-domain  interactions’,  (ii)  ‘path-
dependency’,  and  (iii)  ‘drivers  and  self-reinforcement  of  change’  (Holtz,  2011).  System
Dynamics  (Sterman,  2000)  and agent-based methods  (Tesfatsion,  2002;  Buchanan  2009),
however, currently have scalability challenges and thus have not yet been integrated into
IAM scale analysis,  or into other forms of global macro models. It is not necessary – in
principle – to model every individual agent across sectors and its interactions. Equivalent but
simpler statistical models, for instance of technology adoption by interacting agents, can be
readily scaled up (Mercure, 2012; Mercure et al., 2014; Mercure, 2015), and non-equilibrium
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models of the global economy already exist (e.g. Cambridge Econometrics, 2014; Meyer et al.,
2013). At the next level of complexity, representative cohorts or ensembles can be simulated
to obtain system statistics, while still simulating orders of magnitude fewer individuals than
in the real system. Such approaches are used successfully in global ecosystem models such as
HYBRID (Friend and White,  2000)  and LPJ-GUESS (Smith et  al.,  2001)  as well  as  in
intergenerational investment and savings modelling (Miles, 1999; Rangel, 2003; Gokhale and
Kotlikoff, 2002). 

In this paper, we provide some concrete examples of how complexity and behavioural
sciences can be used for the assessment of sustainability policies, with emphasis on model
uncertainty analysis, in order to build a powerful approach for next-generation public policy
analysis. We identify four key areas of climate policy analysis where uncertainty is high and
where  the  proposed  methodological  approach  would  be  particularly  useful:  dynamics  of
technology  adoption  and  diffusion  (section  2.1);  macroeconomic  impacts  of  low-carbon
policies (section 2.2); interaction between human and environmental systems (section 2.3);
and policy implementation and effectiveness (2.4). We then provide four specific applications
of the proposed methodological shift in connection with: the diffusion of transport technology
(section 3.1);  impact  of  low-carbon investment on income and employment (section 3.2);
processes with cascading uncertainty (3.3); and cross-sectoral impacts of biofuels policy (3.4).

2.  FOUR KEY AREAS OF CLIMATE POLICY WHERE 

UNCERTAINTY IS HIGH

2.1.  Technology adoption and diffusion 

Both  complexity  and  agent  heterogeneity  are  important  to  analyse  the  dynamics  of
technology adoption and diffusion. The diversity of consumers and investors influences the
choice  of  environmental  technology.  Consumers’  choice  of  certain  technologies,  such  as
vehicles,  takes  place  within  contexts  of  distributed  income  that  span  several  orders  of
magnitude (e.g. Mercure & Lam, 2015). The diversity of incomes, social groups and attitudes
is  known to determine the rates  and profiles  of  diffusion of  innovations  (early  and late
adopters, etc, see Rogers, 2010). For present purposes, that means that agent heterogeneity
matters in real life, and it must therefore be integrated into models. Modelling the impacts of
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policy incentives to the consumer using averages over too few consumer group parameters
can indeed be misleading, since differences in income and other socio-economic parameters
across consumers lead to highly diverse consumption habits. 

Meanwhile, interactions between agents are also crucial to consider when analysing
technology adoption, since technology generally features increasing returns to adoption: the
adoption of technology by agents is increasingly more probable the more agents adopt and
use the technology. Transitions build upon themselves with dynamics following a pattern
comparable to that of infectious diseases (see Mansfield, 1961). Thus, increasing returns may
generate resistance to change in socio-technical regimes (lock-ins), but they may also give
momentum to technological transitions (Anderson et al., 1989 pp 9-10, Arthur, 2014; 1989).
This aspect is treated in detail in the traditions of evolutionary economics (e.g. Freeman &
Perez 1988) and transitions theory (e.g. Geels 2002). 

For obvious reasons, anticipating how diverse agents may respond to different policies
has elicited great interest (see Grubb, 2014). The impact of incentives to consumers with
differing  incomes  and  social  groups  has  been  studied  in  detail  from  the  perspective  of
marketing (empirically, e.g. Bass, 1969; Fisher & Pry, 1971; McShane, Bradlow, & Berger,
2012), anthropology (Douglas & Isherwood, 1979) and behavioural economics (discrete choice
modelling, e.g. Ben-Akiva & Lerman, 1985; Domencich & McFadden, 1975, and behavioural
response,  e.g.  Kahneman  &  Tverski,  1979;  Tversky  &  Kahneman,  1974).  However,  the
contribution of this research to the understanding of climate policy has so far been mostly
overlooked in climate change mitigation modelling or  environmental  assessment  research.
Their use thus remains a promising but emerging field (e.g.  Köhler  et  al.,  2009;  Axsen,
Mountain, & Jaccard, 2009; Giraudet, Guivarch, & Quirion, 2012; Rivers & Jaccard, 2006).
Grubb (2014) emphasises the need for future research on behavioural aspects of emissions
reductions. Insufficient efforts have been devoted to understanding the aggregate behavioural
response to sustainability policy instruments, and this is related to a possibly overstated
expectation that an efficient equilibrium should emerge on its own in technology markets. 
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Figure 1: Schematic representation of a binary logit, reproduced from (J.-F 
Mercure, 2015). Agent perceptions of the generalised cost (i.e. including non-pecuniary 
terms) of choice options vary around central values. In a choice between two options with 
distributed costs, neither is adopted by all agents; each gets a fraction of agent choices 
according to a comparison between both cost distributions.

Empirical marketing research literature shows that technology substitution in many
different contexts follows simple S-shaped diffusion profiles (e.g. Fisher & Pry, 1971; Grübler,
et  al.,  1999;  Mansfield,  1961;  Marchetti  &  Nakicenovic,  1978).  More  generally,  the
competition  between  several  technologies  for  market  space  can  be  described  by  coupled
Lotka-Volterra systems (Bhargava, 1989; Karmeshu, et al., 1985). More recently, it has been
shown  that  Lotka-Volterra  systems  can  be  derived  from  simple  statistics  of  industrial
dynamics (Mercure, 2015). This can equivalently be expressed with the ‘replicator dynamics’
system of evolutionary theory: natural selection is carried out by the consumer, who filters
successful innovations based on their fitness to the market, while entrepreneurs strive to
improve their products in order to increase their fitness by better matching consumer taste
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(e.g. Safarzynska & van den Bergh, 2010). This natural selection, however, involves decision-
making by consumers under bounded rationality, who are naturally highly diverse, and the
diversity of consumers drives product differentiation and increasing product diversity (for
example with private vehicles, see section 3.1. below). 

Equilibrium/optimisation models neglect agent heterogeneity and interactions, as they
look at average agents in isolation facing choices (with perfect information), rather than at
socio-technical systems where agents influence what other agents do. Agent heterogeneity
could,  however,  be  represented  to  some  extent  in  models  by  introducing  statistical
distributions  over  agent  perspectives  (see  Figures  1  and  3:  preferences  are  often  simply
distributed), instead of using mean values only. In such a framework, the modeller disposes of
both mean values as well  as ranges.  Then, when evaluating aggregate agent propensities
towards  technology  substitution,  one  simply  faces  comparisons  between  probability
distributions, as for instance in a binary logit. Chains of binary logits enable to define agents
with bounded rationality and to model  diffusion dynamics, not typically done in current
models (Mercure 2015). 

This is an area where our methodological shift may advance the understanding of
sustainability policy by moving the research focus from the generation of ‘desirable’ energy
sector storylines (policy formulation) to the forecasting of ‘likely’ policy outcomes (policy
assessment) based on existing technology, knowledge of the market, and technology diffusion
dynamics.  More  fundamentally,  the  proposed  methodology  disentangles  normative  and
descriptive  analysis  as  useful  but  distinct  perspectives  (see  Mercure  et  al.,  2014  for  an
extensive discussion). However, as is the case with any model involving non-linear dynamics,
uncertainty over model outcomes due to uncertainty over parameters increases exponentially
with modelling time span, an issue that needs to be addressed (see section 2.3 below). 

2.2.  Green growth: macroeconomics and the finance of 

innovations

Complexity  and  agent  heterogeneity  are  also  important  to  understand  the  interactions
between technology diffusion, lenders’ expectations and macroeconomic fluctuations, which
drive economic development/growth and are affected by climate change mitigation policies.
Theories  based  on  utility-maximising  non-interacting  agents  assume  full  employment  of
economic resources. Under full employment, policies that lead to a re-allocation of resources
from  an  optimal  equilibrium  starting-point  are  unavoidably  detrimental  to  economic
performance. However, full employment is never observed in reality. In real life, expectations
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as to the performance and return of  innovations drive most  investment,  and ultimately,
economic development and growth. Importantly, expectations as a process arise from multi-
agent interactions (e.g. see the artificial stock market by Arthur, et al., 1997). 

Policies for the diffusion of low-carbon innovations present significant opportunities for
both  the  private  sector  and  job  creation  (e.g.  Blyth  et  al.,  2014;  CBI,  2014).  But  the
feedback  between  the  diffusion  of  new  sustainability  technologies  and  economic
development/growth is poorly understood and reported. There is an apparent contradiction
between observations of highly lucrative activity arising in successful low-carbon ventures
(e.g.  Tesla  electric  and  Toyota  hybrid  cars,  wind  turbines,  solar  photovoltaic),  and  the
perception  that  the  use  of  lowest-cost  fossil  energy  with  conventional  technology  is
indispensable  for  development/growth.  This  type  of  dichotomy  pervades  climate  policy-
making. 

In  conventional  equilibrium  economics,  full  employment  (which  results  from
maximising the utility of the representative agent) entails that all resources are currently
allocated in the economy in the most productive way they can be. This is contradicted by
empirical observation (e.g. as reviewed by Grubb, 2014), which shows that different countries
lie  at  varying  distances  from  theoretically  defined  efficiency  or  productivity  frontiers.
Effectively, the use of economic resources depends upon the economic development trajectory
followed by an economy (investment, fixed and human capital and labour, ibid). Moreover, in
equilibrium-based  theories,  savings  are  understood  as  a  share  of  fixed  national  income
(GDP),  equal  to  investment,  resulting  from  a  choice  by  agents  between  spending  on
consumption in the present or in the future. Thus if a fixed share of income is allocated to
investment, naturally, all firms compete for this fixed allowance (crowding-out), equilibrating
supply  and  demand  for  finance.  Since  in  equilibrium  investment  and  labour  is  fixed,
equilibrium-based theories cannot reproduce financial fluctuations or crises,  such as those
observed since 2007, or involuntary unemployment, as currently observed in many parts of
Europe (Eurostat, 2015). 

In a broader complexity/non-equilibrium economics perspective, income is not fixed,
and  thus  investment  does  not  need  to  be  a  constant  share  of  the  ‘welfare  of  the
representative agent’. Instead, causality is reversed: income heavily depends upon investment,
and investment decisions depend upon decisions by financial institutions. This link, however,
opens the door to fluctuations: interacting investors in technology ventures can influence each
other  into  frenzies  or  panics.  Indeed,  the  finance  of  technology  and innovation leads  to
productivity change (a phenomenon demonstrated already in the 1950s by Solow, 1957) but
also to speculation and bubbles (Keynes, 1936), which, in turn, create economic cycles (see
Perez,  2001;  Freeman  & Louça,  2001;  Schumpeter,  1934,  1939).  Investment  fluctuations
heavily influence the level of economic development. This dynamic was at the roots of the
great recession (Keen, 2011), after which quantitative easing was used to offset the reluctance
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of financial institutions to provide credit. This dynamic cannot be understood without taking
into  account  the  interactions  between  technology  diffusion,  lender  expectations  and
macroeconomic fluctuations. 

More realistic economic modelling that allows for variable amounts of finance and
investment is possible if one abandons the restrictive assumptions of equilibrium approaches
(imposing a theory of non-interacting agents that are all simultaneously employed or not
employed)  with  their  assumed  full  employment  of  economic  resources.  In  a  theoretical
approach that allows for crowd effects to emerge, the amount of investment in the economy is
determined by investment decisions by lenders acting upon expectations of return. This is
not a new theoretical approach. In point of fact, it is at the roots of both Schumpeterian
(Schumpeter, 1934, 1939) and Keynesian (Keynes, 1936) forms of demand-led economics. A
post-Schumpeterian or  post-Keynesian perspective also  allows for  fluctuating amounts of
money in the economy, and indeed, this is what is observed (called endogenous money, as
explained by the Bank of England, see McLeay, et al., 2014). 

As understood in the tradition of Schumpeterian economic history, the emergence of
new  technologies  is  characterised  by  important  increasing  returns  to  investment  and
adoption, and it involves strongly path-dependent cross-sectoral spill-overs that often lead to
economy-wide activity accelerators (Freeman & Louça, 2001). For example, in the industrial
revolution, new textile machinery required better iron and steel. Investment in iron and steel
led to the emergence of  an industry as well  as cost reductions that reshaped the whole
‘design space’ for other products to be made out of those materials more cheaply (ibid).
This, in turn, enabled many related and clustered innovations to emerge and economically
reach the marketplace (a statistical analysis of the process of clustering of innovations is
given by Arthur & Polak, 2006). In the Schumpeterian economic tradition, the clustering of
investment stemming from the clustering of innovation leads to both economic prosperity and
depression periods in alternation (Freeman & Louça, 2001; Perez, 2001; Schumpeter, 1939).
Risks of financial crises arise when finance is raised using financial assets as collateral (Keen,
1995,  2011),  a  phenomenon known to have taken place periodically  over  history  (Perez,
2001), including in recent years (Keen, 2011). 

Formal modelling of path-dependent, non-equilibrium macroeconomics is possible on
the  basis  of  two  assumptions.  Firstly,  under  the  principle  of  cumulative  causation  of
knowledge  accumulation,  productivity  change  is  described  by  sets  of  aggregate  sectoral
learning curves  where productivity  growth is  derived from cumulative investment  and is
roughly  consistent  with  the  trends  observed  in  economic  history,  e.g.  in  Kaldor  (1957),
Schumpeter (1934). Secondly, income must be allowed to depend upon investment, instead of
the  reverse.  This  understanding  is  path-dependent  and  implicitly  integrates  multi-agent
interactions  by  allowing  increasing  returns:  learning  (i.e.  knowledge  accumulation),
investment  fluctuations  (through  expectations),  economic  cycles  and  technology  diffusion
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(through social interactions). One example of such a model is E3ME/G (see www.e3me.com,
Cambridge Econometrics, 2014a), which derives a closed set of functional relationships using
regressions on economic data, and thus enables the evaluation of employment, instead of
remaining  constrained  by  the  full  employment  assumption.  Other  similar  models  exist,
including GINFORS (Meyer et al., 2013). However, so far, no large-scale model has included
detailed dynamics of the financial sector (Pollitt & Mercure 2015). 

With regard to climate change mitigation, it is well established that an amount of
investment in the energy sector larger than in a business-as-usual scenario will be necessary
(e.g. IEA, 2012). This scale of investment in new technology sectors is likely to result in
substantial economic reallocations due to cross-sectoral spill-overs (e.g. new materials, new
design and engineering methods, etc). Importantly, in models without the constraint of full-
employment  of  resources,  capital  and  labour,  the  impact  can  be  either  beneficial  or
detrimental,  depending  on  many  factors,  such  as  the  trade  balance,  energy  imports,
international  competition  and  relative  prices.  When  the  implications  are  beneficial,  the
transition  can  be  termed  as  green  growth,  where  new  investment  and  employment  are
generated from technology policy, although possibly with important relative price changes. In
section 3.2, we discuss an example where climate change mitigation policy leads to increased
employment and GDP as a result of enhanced investment in the electricity sector. This said,
technology policy does not necessarily lead to beneficial impacts because such policies can
take  many  forms.  In  an  equilibrium-based  theory,  however,  the  possibility  of  beneficial
outcomes is entirely ruled out, and by assumption rather than as a result of calculations.
Indeed, equilibrium models always predict detrimental impacts for climate mitigation efforts
(e.g. as in all the models chosen in the 5th assessment report of the IPCC, see IPCC, 2014,
Ch. 6, p.450), such that the debate is framed in terms of burden, and economic opportunities
of climate policies are not extensively examined (Grubb, 2014; see, however, Ekins, et al.,
2011; Lee, et al., 2015). This is also the case of partial equilibrium models, where, such as in
the case of the World Energy Model utilized by the International Energy Agency for its
World Energy Outlook report, the investment cost of interventions is estimated, but it is not
compared  to  policy-induced  avoided  costs  nor  the  impact  of  these  interventions  on  the
macroeconomy. The result is a partial analysis that emphasizes only the costs, and not the
benefits of intervention (UNEP, 2011). 

Thus, and importantly, we see that the incorporation of multi-agent interactions (by
accounting for feedback loops, delays and nonlinearity) leads to key consequences for theory
and its application: in a theory where investment is determined by expectations, information
flow between variables runs from variable or fluctuating savings/investment to income, back
to investment, and allows for beneficial impacts of technology policy while in equilibrium-
based theories, information flows from fixed income to investment, and beneficial impacts are
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ruled out. Given the scale of the socio-economic transformation required to address climate
change, a realistic understanding of whether a sustainability transition involving mitigation
policies favours or hinders economic development/growth is key for sound policy-making. 

2.3.  Uncertainty analysis in human-environment interactions 

and climate change 

Models based on complexity theory can better describe the complex interactions between the
socio-economic and the natural (environment) systems. Such interactions are at the heart of
climate  policy,  and  they  can  be  effectively  simulated  at  a  low cost  through  the  use  of
statistical emulators. 

Feedbacks  between  the  economy and  the  natural  environment take  place  through
direct  human  intervention  (e.g.  land-use  change)  or  indirectly  through  the  impact  of
economic activity (e.g. the generation of air pollution or the emission of greenhouse gases
causing climate change). The natural environment influences, in turn, human action leading
to a highly complex system of feedbacks. The allocation of land for agriculture, including
crops for biofuels, interacts directly with the climatic system through phenomena such as
deforestation, land-use change emissions and desertification, but also indirectly through the
economy. The extensive use of water further constrains the availability of natural resources
for human use, in what is increasingly referred to as the food-energy-water nexus. At the
same  time,  natural  resource  use  stems  directly  from  economic  processes,  involving  the
demand for agricultural, energy and forestry commodities that are traded in international
markets. 

Exploring  complex  interactions  between  the  environment  and  the  socio-economic
system  requires  detailed  representations  of  the  role  and  behaviour  of  the  natural
environment, which is no minor endeavour. Indeed, climate modelling is carried out with the
most  powerful  supercomputers  currently  available.  The  response  of  the  environment  to
anthropogenic  influence  is  increasingly  well  understood  (IPCC,  2013)  and  some  of  this
knowledge has been reproduced reliably enough through the use of  emulators (statistical
representations).  Emulators  can  be  used  directly,  without  requiring  detailed  parallel
simulations  with  supercomputers  alongside  an  economic  model.  Such  statistical
representations, which interpolate climate responses based on large climate model output
data, have now been used for some time (e.g. Meinshausen et al.,  2009), facilitating the
access by social and economic modellers to quantitative results from climate science, usually
carried out in different institutions. 
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In  this  context,  a  frequently  used tool  is  the linear  approach of  ‘pattern  scaling’
(Tebaldi & Arblaster, 2014). This approach assumes that the spatial pattern of change in the
climate output of interest is invariant with respect to time and forcing. This approximation is
often inadequate, however, for instance in the case of land-use change, which not only has
significant impacts on the global climate through greenhouse gas emissions but also has a
more localised (i.e. ‘pattern changing’) impact on climate through changes in surface albedo,
moisture transfer and river runoff (Myhre et al., 2013). A more general approach that allows
for  changes  in  the  pattern  of  climate  impacts  has  been  developed  recently  (Holden  &
Edwards, 2010) and applied to ‘emulate’ complex models of a range of climatic systems. The
technique has been used to produce emulators for the climate model PLASIM-ENTS (Holden
et al., 2014), the carbon cycle model GENIE (Holden, et al., 2013), and the land surface
model  LPJmL (Oyebamiji  et al.,  2015). These emulators have already been applied in a
range of integrated assessments (including but not limited to IEA, 2013; Labriet et al., 2013;
Mercure et al., 2014). 

Figure 2: Schematic representation of cascading uncertainty across 
statistical model emulators

Such a methodology provides a useful platform for the integration of large amounts of
environmental  data  into  socio-economic  and  policy  analyses.  By  concatenating  such
emulators in ‘chains’ (see schema in Figure 2), one can indeed obtain a representation of
uncertainty cascading across sectors. This technique avoids possible biases that may emerge
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from  the  use  of  median  trajectories  when  linking  different  models.  And  it  enables  the
exploration of representations of all likely trajectories simultaneously, at low computational
costs. 

The cascading of uncertainty that increases with simulation timespan stems from the
general property of complex non-linear models, which produce scenarios that diverge from
each  other  exponentially  for  arbitrarily  small  changes  in  starting  parameters  (i.e.  the
sometimes termed ‘butterfly effect’ in chaos theory), typical of climate models. This type of
uncertainty is also a property of an economic model with positive feedbacks, as well as of
diffusion-based technology models. More generally, it would be inconsistent to treat economic
projections as deterministic (e.g. a GDP trajectory in equilibrium), while treating climate
projections as probabilistic (e.g. 95% probability range for a global warming trajectory). It is,
however, entirely possible to assign ‘uncertainty bounds’ to projections of a socio-economic
model through the use of statistical analysis. Thus, the uncertainty faced in climate policy-
making  can  be  effectively  tackled  through  such  statistical  shortcuts.  Depending  on  the
sensitivity of each sub-system to perturbations (i.e. the rate of divergence of scenarios, and
conversely, the possible presence of ‘attracting states’) the cloud of uncertainty may increase
moderately or dramatically as it propagates through the chain. This in turn provides a clear
quantification of our ability to reliably model the ensemble of systems. 

2.4.  Policy effectiveness, behaviour and implementation 

Tools from marketing research, anthropology and behavioural economics can be very useful
to improve our understanding of consumer and investor behaviour. They provide a powerful
addition to economy-environment modelling, namely the ability to predict quantitatively the
most likely aggregate response to policy instruments. Valuable insights can be gained in this
way.  In  climate  change  policy,  which  requires  action  sooner  rather  than  later,  there  is
significant value in the ability to predict the effectiveness of emissions reduction measures.
However, assessing such feasibility requires knowledge of their legal and political implications
and constraints (e.g. political feasibility, legal consistency), which may be just as important.
Apparently minor differences in the applicable legal framework (e.g. the modalities for the
acquisition of land, the modalities for the initial distribution of emission reductions or for
their banking, the local content requirements added to a feed-in-tariff scheme to make them
politically  palatable)  may,  in  fact,  make  certain  developments  less  effective,  or  more
vulnerable to challenge, or even block them entirely. 

Much  policy  analysis  has  been  carried  out  in  connection  with  specific  policies
proposed to address externalities such as pollution or environmental degradation, including
taxes  and  other  financial  incentives  imposed  on  households,  firms  or  consumers.  The
justification for taxes is often based on considerations of ethics and social justice (IPCC,
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2014, Ch. 3); it less frequently results from the analysis of their likely effectiveness (IPCC,
2014, Ch. 15). Indeed, policies are often chosen and adopted without much prior knowledge
of their likely effectiveness, which ultimately lies with investor and consumer decisions. Their
impact is mostly assessed ex-post; however here, relying on ex-post policy evaluation does
not fit in the timescale of action. Policy analysis for climate change mitigation is complex,
and realistic proposals must take into account the political and institutional (legal – both
domestic  and  international)  context.  For  example,  some  environmental  differentiation
techniques (e.g. certain subsidies or feed-in tariffs), may be inconsistent with international
economic law and can attract significant legal difficulties (Vinuales, 2012). Furthermore, the
introduction of carbon pricing mechanisms (e.g. a cap-and-trade system where the allowances
are freely allocated – at least initially – on the basis of prior emissions) can be politically
very  different  from  that  of  energy/fuel  standards  or  emissions  taxation,  and  it  would
therefore have a different likelihood of success. Thus, studying the effectiveness and feasibility
of policy measures requires integrating expertise on the mechanisms of policy-making and
law with expertise on the modelling of decision-making by investors and consumers. However,
such  a  broad  integration  of  expertise  is  extremely  rare  in  contemporary  state-of-the-art
climate change mitigation research. 

We propose here, as part of the working structure of simulation-based sustainability
policy assessments, a two-way feedback with knowledge of domestic/comparative politics and
environmental, investment and trade law. This would effectively guide the ‘what if’ approach
to scenario-creation for testing potential policies, as opposed to proposing policies that are
already ‘optimal’.  Effectively,  in  a  model  that  is  not  based on optimisation,  policies  are
assessed on the basis of their ability to effectively achieve certain objectives through the
simultaneous  use  of  several  policy  instruments  that  interact  with  one  another.  Such  an
approach avoids the more common siloed assessments, and it accounts for policy impacts
across sectors. This approach is in fact recommended by the European Commission in its
Impact Assessment guidelines (EC, 2009; 2015). 
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3.  PRACTICAL RELEVANCE OF THE PARADIGM SHIFT: 

SPECIFIC APPLICATIONS TO FOUR KEY CLIMATE POLICY

ISSUES 

3.1.  The impact of consumer heterogeneity on the diffusion of 

new transport technology

The  importance  of  agent  heterogeneity  for  technology  adoption  can  be  empirically
established, as shown in figure 3, using private passenger vehicle purchases as an example
derived from recent work (Mercure & Lam, 2015). As shown in figure 3, in the UK, the
distribution of car purchase prices follows closely the income distribution (panel a). Cars of
different  prices  have  different  manufacturer-rated  emissions,  which  are  thus  similarly
distributed  (panel  b).  Vehicles  with  alternative  engine  technologies  have  yet  a  different
distribution,  and  this  stems  from  their  gradual  process  of  diffusion,  which  takes  place
unevenly with respect to the distribution of conventional vehicles (panel c). Finally, rated
emissions are correlated with vehicle prices through a log-linear relationship.
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Figure 3: Data relating the impacts of consumer diversity and market structure 
on the effectiveness of emissions taxation in the private personal mobility sector 
(reproduced from Mercure & Lam, 2015). a) Comparison of the UK income 
distribution to the price distribution of recent vehicle purchases. b) Comparison of UK 
market coverage between conventional and unconventional vehicle engine technology. c) 
Associated distribution of vehicle carbon intensities. d) Structure of the UK vehicle market 
for prices and emissions from which likely effectiveness of taxes can be deduced. Such data 
was studied for 6 major economies (Mercure & Lam 2014).

Car purchase choices largely depend upon each consumer's respective social group,
through social interactions, as has been shown in empirical work (for example McShane et
al.,  2012).  This  generally  explains  the  relationship  between  consumption  behaviour  and
income  distribution  shown  above.  Consumers  do  not  attempt  to  minimise  their
transportation costs; instead they apparently purchase what is most common in their visible
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surroundings, and the diversity of social groups is what forms the lognormal distribution
shown above. Alternatively, we can say that consumers maximise utility within a subset of
the market (bounded rationality) defined by their social interactions. 

It thus appears necessary to look at each band of income, and each type of consumer,
separately. If we now explore possible substitutions between models that could result from
emissions reduction policies in the car market, we can calculate elasticities of substitution
from these distributions by determining statistically which vehicle models are most likely to
be chosen within the same new price band (after tax). Therefore, the rate of adoption of
consumer technology, including low carbon systems, stems precisely from this diversity, which
varies across the world (as shown in Mercure & Lam, 2015). This enables us to determine the
effectiveness  of  certain  low-carbon  policies  (taxes,  subsidies)  at  incentivising  technology
substitution, using market data. In point of fact, this is exactly what marketing research does
to forecast sales before placing new products in the market. 

Such information can be fed into technology diffusion models that aim to reproduce
typical S-shaped profiles (e.g. as in the Future Technology Transformations (FTT) model,
Mercure, 2012) to provide expected rates of adoption (see Figure 5 further below). Such a
representation reproduces technology lock-ins. This picture is incomplete, however, as it does
not represent attitudes and culture. Yet, just as with firms attempting to place new products
in the market, the more detailed information thus gained helps to better characterise the
rates  of  technology  adoption  that  could  result  from  proposed  policies  throughout  the
diffusion  cycle.  By  contrast,  optimisation-based  models  would  typically  characterise
variations in consumer behaviour,  at best,  by parameterising different  discount  rates  for
technologies attributed to particular market segments. 

3.2.  Green growth: employment and income impacts of low-

carbon investments

The importance of accounting for the interactions between lenders’ expectations, technology
diffusion and macroeconomic variables can be illustrated by reference to the link between
low-carbon investments, income and employment. Figure 4 is based on a non-equilibrium
macroeconomic model, which is not subject to the full employment constraint (E3ME/E3MG
Cambridge  Econometrics,  2014b).  It  shows  a  possible  causal  chain  in  the  process  of
technology finance based on expectations impacting the economy in the electricity sector.
This calculation is further described in Mercure et al., (2015).
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Figure 4: Example of possible economic impacts of investment in low-
carbon electricity generators, when studied using a non-equilibrium post-
Keynesian model, E3MG-FTT

In this model, no limit is imposed on finance for technology developments, which in
contrast to an equilibrium model, has no direct relationship to interest rates (assumed in
equilibrium to clear the money market). In other words,  financial resources are given to
entrepreneurs  by banks for  low-carbon investments  through credit  creation.  The model’s
critical assumption is only the solvency of entrepreneurial activity, i.e. economic viability of
low-carbon projects. Therefore it is not claimed that the economic system has no limit at all
on money flows: it is assumed that all technology ventures that are financed in any scenario
are profitable (for instance by assuming sustained credible policy and/or prices that make
these  ventures  feasible),  and  that  government  and/or  private  debt  is  not  indefinitely
increased.  This  ensures  that  situations  that  could  lead  to  financial  instability  through
unsustainable debt growth are not created. This example is selected to show that economic
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outcomes of mitigation policy in models are entirely dependent on model architecture, and
that impacts can be (but are not necessarily) beneficial if one allows for non-equilibrium
effects. 

In this example, the electricity sector is decarbonised by 90% (scenario previously
published  in  Mercure  et  al.  2014).  Higher  costs  of  low-carbon  electricity  generation
technologies (e.g. wind turbines, solar panels, carbon capture and storage) are passed on by
utilities into their bills to customers, i.e. into higher prices of electricity, proportionally to the
evolving technology composition. Entrepreneurial activity requires loans to finance new low-
carbon capital, which requires more investment than existing fossil fuel generators. Banks
create money to finance these ventures. Loans are paid back over capital lifetime by firms
using  a  higher  price  of  electricity  (and,  for  example,  possible  feed-in  tariffs),  and  the
additional money is gradually destroyed as the loans are paid back. In the model, as shown
in figure 4, the higher level of money flows from investment (panel a) creates jobs (panel e),
increases disposable income (panel f) and consumption (panel g), with possible effects on
inflation (panel h). Meanwhile, higher prices of electricity increase operational costs of most
sectors, and thus decrease employment, household income and consumption (same panels),
i.e. an offsetting force. These two effects were observed to roughly cancel each other in the
model  and scenario  (see  Mercure  et  al.,  2015).  A positive  ‘green  growth effect’,  in  this
particular case, is generated in parts due to redistribution policy, in parts due to increased
employment.  Revenue raised by fuel  taxes  (panel  c)  aimed at  incentivising technological
change (carbon pricing), minus spending on technology subsidies (panel b), is indeed recycled
to lower income tax. This moves the system’s balance towards a higher income level than in
a baseline scenario (higher GDP, panel i). This effect subsides in later years (US, Europe)
when investment and redistribution declines, while the price of electricity remains high, and
the effect may even reverse when the technology transformation is completed and society
faces servicing debt only. Debt servicing takes place through consumers paying a higher price
for electricity. 

Note, therefore, that while economic growth is enhanced in this scenario, private debt
is  also  increased beyond the end of  the simulation.  In non-equilibrium theory,  borrowed
investment flows indirectly contribute to increased aggregate demand in the short run, when
loans are issued, and to decreased demand in the long run, when loans are gradually paid
back.  Increasing  the  level  of  borrowing  generates  debt-based  growth,  which  if  done
indefinitely,  generates  significant  prosperity  but  eventually  leads  to  collapse  through  a
financial  crisis.  It  is  unlikely  that  climate  change  mitigation  would  lead  to  indefinite
borrowing. But it will likely require significant amounts of finance. 

According to Keen (e.g. Keen, 2011), extended debt-based growth and excessive debt
levels have been the underlying cause of the recent banking crisis, and possibly many other
economic cycles historically (Perez, 2001). This points to a complex entanglement between
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strategies for economic recovery after the economic crisis, and strategies for climate change
mitigation policy. The financial crisis involved banks refusing to lend despite quantitative
easing,  while  mitigation,  a  potential  economic  stimulant,  requires  increased  amounts  of
finance in the energy sector. 

We conclude that further research is required to understand the levels of debt and
risk,  private  and  public,  that  economies  can  realistically  undertake  to  reduce  global
emissions, as well as to clarify the collective expectations on their economic returns. In a
complexity/non-equilibrium perspective, the impact of collective expectations appears to be
the key issue to explain, rather than simple welfare effects of different allocations of fixed
amounts of capital typically analysed with current optimisation models. In the context of
scenarios  of  rapid  decarbonisation,  the  analysis  of  debt  and  access  to  finance  becomes
particularly crucial. 

3.3.  Model integration across processes with cascading 

uncertainty

Large models of the natural world have many imperfectly known parameters as well as –
through multiple  combinations  of  those  parameters  –  a  considerable  number  of  possible
output  values  arising  from  variations  in  those  parameters  (even  10  settings  of  only  10
parameters would generate 1010 possibilities). Statistical modelling techniques are required
to interpret such a large space of uncertain outcomes. When several models are ‘soft-linked’
in a causal chain, the uncertainty of models upstream inevitably generates higher uncertainty
downstream as we give ever wider ranges of parameters to models. Figure 5 gives an example
of this with 3 soft-linked models, starting with individual emissions scenarios from E3MG-
FTT (note that these scenarios are the same as in Figure 4, their emissions trajectories
coupled to climate emulators; they are also the same as scenarios a. and j. in Mercure et al.,
2014).
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Figure 5: Example calculation of the environmental impacts of electricity 
policy instruments using E3MG/E-FTT (left 4 panels) with OU 
emulators (right panels), from policy to global warming, with cascading 
uncertainty bounds from combined carbon cycle and climate system 
emulators.

In (a.), we have a baseline scenario of the composition of the global electricity sector,
calculated under 21 regions independently. Using a composite scenario of emissions reduction
policies that include carbon pricing, technology support policies (subsidies and feed-in tariffs)
and  regulations  (available  in  Mercure  et  al.,  2014),  the  electricity  sector  is  transformed
towards low-carbon technologies (b.). Baseline emissions are projected to increase by 318%
based on their 1990 level (c.), while in the decarbonisation scenario, they are reduced by 90%
(d.). 

These  emissions scenarios  are  fed  to  the carbon cycle  emulator  GENIEem,  which
generates GHG concentration outputs with 95% probability ranges (e.). These are then fed
to the emulator of the climate model PLASIM-ENTS, producing a set of scenarios for global
warming (f.), as well as other locally resolved changes of climate (on a 0.5o grid, not shown).
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The  soft-linking  thus  produces  double  uncertainty  ranges  from  the  concatenation  of
uncertainty. We find that decarbonising the electricity sector by 90% is not sufficient to avoid
exceeding 50% chance of exceeding the international target of 2oC (Mercure et al., 2014). All
sectors  of  the  energy  end-use  system  must  be  involved,  notably  transport.  Cascading
uncertainty ranges in this context is as important as cascading median trajectories. 

3.4.  Cross-sectoral impacts of biofuels policy

In  an  optimisation  model  of  land  allocation,  best  allocations  of  farming  activities  are
determined across the surface of the land studied, which extends to the whole world for
global models. This implies that farmers know instantaneously what is too little and too
much,  and  never  generate  excess  product.  Without  excess  product  or  shortages,  price
fluctuations cannot occur. This is, of course, not what is observed (Piesse & Thirtle, 2009).
However, building a model that can reproduce observed price fluctuations is a significant
challenge,  even  though  such  fluctuations  seem  crucial  to  understand  environmental
degradation and biodiversity loss. Indeed, some deforestation occurs not directly because of
an increasing consumption of agricultural commodities globally, but as a result of commodity
prices fluctuating globally, due to self-reinforcing expectations of returns (e.g. Arima, et al.,
2011; Morton et al., 2006). 

In  a  non-equilibrium  model  that  includes  representations  of  decision-making  by
heterogeneous agents in agriculture with expectations of return on their crops, in tandem
with a global model of the economy and bilateral trade of agricultural commodities, very
different dynamics can emerge. The use of heterogeneous agent functional types has been
suggested to improve model realism (Arneth, et al., 2014; Rounsevell et al., 2014). While
price  substitutions  and  changes  in  trade  patterns  can  occur  with  the  consumption  of
agricultural  commodities,  massive  land clearance  and conversions  can also  take  place  to
accommodate expectations around changing prices.  Such models generate highly complex
dynamics,  but are useful to determine what types of  transformations could occur in the
future without appropriate land management policy. Complex dynamics however will only
arise in models that incorporate heterogeneity, increasing returns and expectations. When
land-use decisions are based on expectations and influenced by neighbourhood effects, then
similar contagion dynamics as in technology diffusion may take place, i.e. the diffusion of
agricultural practices. 

When  brought  into  the  picture,  biofuels  policy  adds  further  uncertainty  and
complexity. On the one hand, the willingness to pay for ethanol in some parts of the world
could outbid the ability to pay for food commodities in other parts of the world, while, on
the other hand, shortages of food may also be felt through commodity prices after land-use
decisions are already made and applied. Effectively, some biofuels policies have the potential
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to open the door for substantial fluctuations in food prices, but we do not know which ones,
and at what scale. This issue requires models of a type that is currently not available, but
needs to be addressed rapidly. 

3.5.  Is higher model complexity an advantage or a drawback 

for policy-makers?

Lower complexity or reduced-form models are often argued to be advantageous to use due to
their  higher  apparent  transparency,  and  thus  more  appropriate  for  policy-making.  An
example is the use of Nordhaus' DICE model, which was originally designed for illustrative
purposes  using  sketchy  data,  but  has  been  used  for  policy-making  purposes  in  some
countries, including the USA and the UK. 

Lower complexity does not mean better science, and simplifications can, in some cases
(e.g.  as with Nordhaus,  2010) lead to potentially plainly incorrect conclusions (its single
sector/good representation of the economy excludes many important effects such as spill-
overs and multipliers). Moreover, and more fundamentally, the use of deterministic model
projections  (e.g.  policy-making  based  on  an  optimal  carbon  price  that  results  from
intersecting deterministic curves for the social cost of carbon and the marginal abatement
cost)  is  not  a  scientifically  correct  methodology.  It  is  clearly  inconsistent  with  the  way
complexity-based climate modelling is conducted. No one would realistically claim the ability
to predict the exact mean global warming in 2050, and there is no reason why such claims
would be justified in economics. 

We thus argue that while higher complexity models may be more difficult to use in
policy circles, such difficulty is clearly offset by their greater realism and rigour. The key
consideration is not whether simpler or more complex models should be used, but whether
the science-policy interface is capable of relaying the results of more powerful and realistic
models to policy circles. 
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4.  CONCLUSION: A WORLD OF NEW POSSIBILITIES FOR 

SUSTAINABILITY POLICY-MAKING

Equilibrium and optimisation-based models are appropriate to use for normative exploration
and identification of desirable future configurations of the technology-economy-environment
system. Given the fact that they are comparatively highly detailed and tested, they are
currently treated as the standard approach. This is possible because normative analysis relies
entirely  on  assumptions  and  does  not  require  empirical  knowledge  of  actual  human
behaviour. However,  such models support only certain steps of the policy cycle,  as they
provide ambiguous information regarding how to achieve – through policy interventions – the
ideal configurations they portray or how likely they may be. This gap is a direct consequence
of a lack of causal relationships with human behaviour. Producing scenarios that accurately
forecast the future course of events as a result of policy choices, with any likelihood (however
low), requires fine-grained representations of human behaviour, its diversity and multi-agent
interactions. These representations are as necessarily imperfect as they are necessary to come
close to real life. 

It  is  often  argued that  forecasting is  not  possible,  and that  serious sustainability
science can only express itself in the form of exploratory scenarios (e.g. van Vuuren, et al.,
2011). We submit in contrast that forecasting is both necessary and inevitable, and can be
improved  within  the  bounds  of  finite  predictability  with  increased  attention  to  known
nonlinearities  and  interaction  effects  (Tetlock  and  Gardner,  2015).  The  climate  sciences
provide a major example of an area where outcomes are expressed in terms of likelihood
levels based on model statistics. Forecasts are not always accurate, but they are nevertheless
useful due to their careful quantification of probabilities, parameters and their uncertainty.
There is no inherent reason why this is not possible in the social sciences. We note that the
climate community now prefers the term 'projection' to indicate that model simulations are
predictions  that  are  conditional  on  their  inputs.  This  distinction  of  terminology,  while
relevant  to  the  remaining  exogenous  assumptions  in  our  case,  does  not  affect  our
fundamental conclusion. 

The main challenge lies in the quantification of likelihood, which is not possible with
current mainstream socio-economic models. We do not claim, however, to be able to predict
the onset of wars, election results, natural disasters, strategic political choices or other unique
events.  Thus,  an important  caveat  must  be  made,  in  that  our  methodological  approach
excludes the occurrence of some events (just like in weather forecasts, which do not take into
account possibilities of volcanic eruptions, even in active areas). 
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Yet,  the  modelling  paradigm  shift  proposed  here  opens  a  large  spectrum  of
possibilities  for  sustainability  policy-making.  It  allows  for  the  quantification  –  within
uncertainty bounds –  of  the expected effectiveness  of  specific policies  aimed at inducing
particular agent groups to take particular decisions (e.g. consumer purchases, investment
choices,  land-use  decisions).  The  ability  to  conduct  such  forecasts  entails  significant
advantages, including the reduction of the uncertainty involved in creating policy portfolios,
and the possibility to explore their impacts across sectors through the coupling of several
sectoral models. For example, one could study the impact of technology support policy for
electric vehicles on electricity prices, which would depend on the pace of their adoption, or
the impact on food prices of large scale land regulations to protect biodiversity or, still, the
impact  on  deforestation  of  biofuels  policy  in  transport.  These  questions  present  major
analytical challenges, but their understanding cannot wait any longer. We believe that the
new generation of non-equilibrium models proposed in this article is capable of rising to this
challenge. 
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