

Science in the BRIDGE project: System complexity and policy integration challenges: the Brazilian Energy-Water-Food Nexus

Dr Jean-Francois Mercure

Assistant Professor in Energy, Climate and Innovation Department of Environmental Sciences, Radboud University, Netherlands C-EENRG, Department of Land Economy, University of Cambridge, UK

www.bridgeproject.net

What is the Food-Water-Energy Nexus?

Sir John Beddington's 'Perfect Storm':

Brazil IS the Food-Water-Energy Nexus

Nexus drivers are both domestic and international:

- International trade transfers problems across borders
- The planet is a global common

Brazil is representative of the World's Nexus

- Brazil will show first symptoms of global Nexus disturbance
- Huge governance and stewardship challenges to address

Future climate change in Brazil

Agriculture and food in the Brazilian economy

Energy-Water-Food nexus in Brazil: 4 primary issues

- Water-Energy: The Hydro crisis
 - ♦ System hydro-dominated, climate change,
 - ♦ Water scarcity related to deforestation.
- 2. Energy-Food: Biofuels policy and competition with food
 - ♦ International demand → biofuels replacing food production,
 - Promotes indirect land-use change
- 3. Food-Water: Climate change, water scarcity and agriculture
 - ♦ North-East suffers desertification, South becomes flooded.
 - Agriculture displaced, total production reduced
- 4. Energy-Water-Food: Indirect land-use change and deforestation
 - ♦ International demand for soybeans/maize for animal feed and biofuels feedstocks
 - ♦ Indirect land-use change → Amazon/Cerrado deforestation

Energy-Water-Food nexus in Brazil: 4 primary issues

System Complexity and Policy Integration Challenges: the Brazilian Energy-Water-Food Nexus

J.-F. Mercure, M. A. Paim, P. Bocquillon, S. Lindner, P. Salas, P. Martinelli, I.I. Berchin, J.B.S.O.A. Guerra, C. Derani, C. L. de Albuquerque Junior, J.M.P. Ribeiro, F. Knobloch, H. Pollitt, N. R. Edwards, P. B. Holden, A. Foley, S. Schaphoff, R.A. Faraco, J. E. Viñuales

C-EENRG Working Papers, 2017-6

4- Energy-Water-Food: Indirect land-use change and deforestation

4- Energy-Water-Food: Indirect land-use change and deforestation

4- Energy-Water-Food: Indirect land-use change and deforestation

Soybeans and maize from Brazil feeds animals Worldwide

The global meat industry is changing globally, rising fast in emerging economies

4- Complex issue: indirect land-use change

- Demand for meat (e.g. pork) increases in China with increasing income
- Soy is used as animal feed
- Brazil produces and exports soy
- Soy displaces cattle farming
- Cattle farmers deforest the Amazon and the Cerrado
- Deforestation intensifies climate change and water scarcity

4- Complex issue: indirect land-use change

- Europe adopts biofuel mandate as part of energy and climate policy
- Demand for ethanol and biodiesel
- Brazilian sugar cane production increases and expands
- Displaces cattle (or other) farming
- Cattle farmers deforest the Amazon and the Cerrado
- Deforestation intensifies climate change and water scarcity

Our Integrated economy-environment model

Diffusion: technology choices

The uptake of new technology: Innovation – Selection – Diffusion

J.-F. Mercure, *Energy Policy* 48, 799-811 (2012)

Diffusion: technology choices

The uptake of new technology: Innovation – Selection – Diffusion

t

J.-F. Mercure, *Energy Policy* 48, 799-811 (2012)

Diffusion: technology choices

Changes in crop choices over time:

Model premises and information

1. E3ME Food commodity demand worldwide

- ♦ E3ME estimated using econometrics, driven by income
- Bilateral trade worldwide estimated
- → FAO food balances respected

2. FTT food commodity supply

- Commodity prices drive crop choices
- ♦ Responds to food demand but sets price with marginal cost
- ♦ Climate change alters land productivity

3. Challenges:

- ♦ Biophysical modelling does not match FAO statistics
- ♦ Primary to end-use not fully defined in FAO
- ♦ Land-use/land area is sometimes ambiguous

Recent model results

Energy Strategy Reviews 20 (2018) 195-208

Contents lists available at ScienceDirect

Energy Strategy Reviews

Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE

Jean-Francois Mercure ^{a, b, c, *}, Hector Pollitt ^{b, c}, Neil R. Edwards ^{c, d}, Philip B. Holden ^d, Unnada Chewpreecha ^b, Pablo Salas ^c, Aileen Lam ^{c, e}, Florian Knobloch ^{a, c}, Jorge E. Vinuales ^c

- Full integrated assessment model built
- Explores the global economy, energy system and environment
- Land-use model to be tested soon...

Recent model results

nature climate change

LETTERS

https://doi.org/10.1038/s41558-018-0197-7

Climate-carbon cycle uncertainties and the Paris Agreement

P. B. Holden 1*, N. R. Edwards 1,2, A. Ridgwell 3, R. D. Wilkinson4, K. Fraedrich5, F. Lunkeit6, H. E. Pollitt 2,7, J.-F. Mercure 2,7,8, P. Salas 2, A. Lam2,9, F. Knobloch 2,8, U. Chewpreecha7 and J. E. Viñuales2

- Climate forcing uses our own Paris Agreement scenarios
- Climate outcome remains uncertain even in a 1.5° C world

Recent model results

nature climate change

LETTERS

https://doi.org/10.1038/s41558-018-0182-1

Macroeconomic impact of stranded fossil fuel assets

J.-F. Mercure ^{1,2,3*}, H. Pollitt ^{3,2}, J. E. Viñuales², N. R. Edwards^{2,4}, P. B. Holden ⁴, U. Chewpreecha³, P. Salas ², I. Sognnaes², A. Lam^{2,5} and F. Knobloch ^{1,2}

- A carbon bubble may be forming with overcapacity for fossil fuels
- Economies, including Brazil, could be strongly affected
- The low-carbon transition will leave people behind

Our integrated Science-Policy BRIDGE

Research and policy challenges for the Nexus

- Understanding the FWE Nexus
 - Data is scarce and the system highly complex
 - The science is incomplete
 - Interventions create new problems
- Can we identify robust, feasible policies for nexus resilience?
 - We must map out the complex layered regulatory system
 - Policy integration challenges across sectors: working together
- Aim to develop a science-policy dialogue
 - The Nexus is complex, difficult to communicate
 - Science helps support the credibility of policy options

Many thanks

